The down operator and expansions of near rectangular k-Schur functions
نویسندگان
چکیده
We prove that the Lam-Shimozono “down operator” on the affine Weyl group induces a derivation of the affine Fomin-Stanley subalgebra of the affine nilCoxeter algebra. We use this to verify a conjecture of Berg, Bergeron, Pon and Zabrocki describing the expansion of k-Schur functions of “near rectangles” in the affine nilCoxeter algebra. Consequently, we obtain a combinatorial interpretation of the corresponding k-Littlewood–Richardson coefficients. Résumé. Nous montrons que l’opérateur “down”, défini par Lam et Shimozono sur le groupe de Weyl affine, induit une dérivation de la sous-algèbre affine de Fomin-Stanley de l’algèbre affine de nilCoxeter. Nous employons cette dérivation pour vérifier une conjecture de Berg, Bergeron, Pon et Zabrocki sur l’expansion des k-fonctions de Schur indexées par les partitions qui sont “presque rectangles”. Par conséquent, nous obtenons une interprétation combinatoire des k-coefficients de Littlewood–Richardson correspondants.
منابع مشابه
Combinatorial Expansions for Families of Noncommutative k-Schur Functions
We apply down operators in the affine nilCoxeter algebra to yield explicit combinatorial expansions for certain families of non-commutative kSchur functions. This yields a combinatorial interpretation for a new family of k-Littlewood-Richardson coefficients.
متن کاملExpansions of k-Schur Functions in the Affine nilCoxeter Algebra
We give a type free formula for the expansion of k-Schur functions indexed by fundamental coweights within the affine nilCoxeter algebra. Explicit combinatorics are developed in affine type C.
متن کاملA non-commutative generalization of k-Schur functions
We introduce non-commutative analogues of k-Schur functions of Lapointe-Lascoux and Morse. We give an explicit formulas for the expansions of non-commutive functions with one and two parameters in terms of these new functions. These results are similar to the conjectures existing in the commutative case.
متن کاملCombinatorial Expansions in K-Theoretic Bases
We study the class C of symmetric functions whose coefficients in the Schur basis can be described by generating functions for sets of tableaux with fixed shape. Included in this class are the Hall-Littlewood polynomials, k-Schur functions, and Stanley symmetric functions; functions whose Schur coefficients encode combinatorial, representation theoretic and geometric information. While Schur fu...
متن کاملThom polynomials and Schur functions : the singularities A 3 ( − )
Combining the “method of restriction equations” of Rimányi et al. with the techniques of symmetric functions, we establish the Schur function expansions of the Thom polynomials for the Morin singularities A3 : (C •, 0) → (C, 0) for any nonnegative integer k.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 120 شماره
صفحات -
تاریخ انتشار 2013